高等数学在整个数学中是什么等级的难度为什么

高等数学中,数列的极限,这个定义是什么意思啊

大家好,高等数学在整个数学中是什么等级的难度为什么相信很多的网友都不是很明白,包括大学专业不建议学数学也是一样,不过没有关系,接下来就来为大家分享关于高等数学在整个数学中是什么等级的难度为什么和大学专业不建议学数学的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!

本文目录

  1. 大学数学类课程是线性代数难还是高等数学难哪科容易挂科
  2. 《大学高数》难学吗
  3. 高等数学在整个数学中是什么等级的难度为什么
  4. 非数学专业考研想考数学专业,建议吗

大学数学类课程是线性代数难还是高等数学难哪科容易挂科

高数比线性代数难点,而且高数下比高数上难,你只有把高数上学好,你才学得好高数下,高数下的很多东西都要用到高数上的知识。

《大学高数》难学吗

感觉高等数学好难,要找出主客观原因,对症下药:

一.客观原因:

1.高数教材的冷面孔与高数内容的抽象性

高数教材中,为了兼顾学科逻辑体系,一般先给出概念、定义,接着列举相关性质及定理证明等内容,这些知识用数学语言描述比较准确,但和生活中的语言相比就抽象多了.如极限的“

”定义,函数的有界性等.高等数学具有严密的逻辑性和高度的抽象性,这也是学生学习中对教材不易看懂吃透的重要原因;而广泛的应用性,又需要学生的大量实践和练习才能真正掌握.这些客观因素告诉我们:学习高数要静心思考,在浮躁的心态下,很难把高数学踏实.

2.学习内容的增多与学习方式的不适应

刚度过高三的新大学生,大多都有松口气的思想,面对高等数学第一个难点(也是一个重点--第一章的函数的极限与连续),从思想上到学习方法上都没有做好必要的准备.以至于学习了一段时间后,产生的问题越来越多,慢慢地出现了畏难情绪.

3.合堂上课,课堂练习少,教学互动少

中学阶段的数学课堂,主要采取老师讲为主,同学练为辅的教学模式。一般高中老师先讲清楚书上的概念定义,给出一些例题,同学在课堂上练习之后,再做些家庭作业用于巩固。还有周考、月考、期中、期末考等,这些过程实际上都是围绕着教学内容进行的知识巩固、强化、反复和提高.也就是说老师给你一种方法,你不断地加以练习直至掌握;而高等数学各种各样的定义性质及证明特别多,课堂上老师讲课速度也比较快。教学环节中缺少练习和消化吸收的过程(主动性、自律性强的同学还能及时练习巩固,很多同学习惯中学的学习方式,等待老师领着做题练习),学生不能及时巩固所学知识,而高数又有很强的前后联系,慢慢积累问题增多,高数就成了多数学生的学习中的障碍。

二.应对方法

1.熟练基本初等函数的图像和性质

函数是微积分的研究对象。微积分的三大基本运算都是围绕函数来进行,要对基本初等函数的图像和性质非常熟悉,特别是三角函数的恒等变形、反三角函数的图像和性质(高中对反三角函数几乎不做要求,要及时补充加深反三角函数的知识),才能进一步掌握各类初等函数和非初等函数(分段函数及各类新型的函数表达方式).

2.抓住开始学高数的关键点--极限

极限是微积分的工具,是高数学习中的一个重点,也是一个难点,它贯穿于整个微积分的学习过程。大一新生开始就要面对这一重难点。高等数学与高中数学有一定的联系,但侧重点不同。高等数学重点讨论的是变量的函数变化关系及极限状态,以自变量的变化为例,就有以下不同方式,稍一疏忽就会得出错误结论.

很多同学求极限出现的错误就是混淆了上面的过程.

3.学好了极限,函数微分学就比较容易了.

导数、微分、定积分、级数的敛散性和判断方法、多元函数的相应概念都是用极限定义的,教材中对基本导数公式,都是用极限和导数法则进行了系统的推导,只要熟记公式和复合函数导数法则,一般就能较好的掌握函数的导数、微分及其应用问题。准备考研的同学还要对微分中值定理、积分中值定理及泰勒级数下点功夫,要理解定理推导的思路和原理,并能应用于类似问题的证明。

4.高数的第二个难点是各类不定积分的计算。

学习时需要做一定量的基本题型,特别要对三大积分方法非常熟悉(凑微分法、分部积分法和第二类换元积分法),要对常见的题型及特点进行梳理(但也并不需要钻研过多的难题)。掌握了各类典型不定积分的计算,就可为后面的定积分和多元函数微积分打下良好的基础,整个微积分就容易通过了。

5.要注意主动运用遗忘规律曲线进行复习和巩固

主动运用遗忘规律曲线进行复习和巩固,从一开始就积极认真对待高数的学习,抓住极限这个关键点,熟悉不定积分的常见的题型、特点及运算,你就一定能学好高等数学。

如果对你有所启发和帮助,就转发并点赞支持一下,我会更努力地为你的高数学习提供帮助。

请关注头条“岳西高数五字诀”,你可得到专业的高数学习指导(有丰富的视频和图文资源).

高等数学在整个数学中是什么等级的难度为什么

明月几时有,把酒问青天,不知天上宫阙,可否有高树,树之高,不见其顶也,又其上,则黯然飘渺,不可及其层数矣,愈其上,则挂的人越多……

不知道你是否也在上大学之前听过类似的言论,大学有棵树,叫做高树(数),上面挂了很多人,亦或是随机过程随机过,概率统计看概率……

对于理工科学生来说,高数虐我千百遍,依然还要待高数如初恋,只因为,挂一科高数,等于挂两门其他的课程的学分,只因为,如果高数学不会,大二大三的专业课也无法进行。提起学高数的意义,最开始是为了拿到那个学分,后来才知道,原来很多课程都是高数作为基础的……

可是无论如何,高数终究是要学的,逃避是不可能的事。

早在公元前的希腊文明中,那时候的智者就已经表现出对数学的极大地敬畏之心,尤其以毕达哥拉斯学派为甚,以至于提出了“万物皆数”的理念。在那个时代,数学还带着一种哲学的味道,哲学家或是数学家都想用完美的数来解释这个世界和宇宙。而后很多文明的诞生与发展,数次工业革命的爆发何曾离开过数学的身影,可以说,没有数学人类文明便不会如此的繁荣昌盛。

就现实而言,当下的哪一门学科的发展能离开数学?物理学,化学,计算机,金融学,生物工程等等,这些学科的极大发展往往需要依赖于相关数学模型和数学原理的完备而实现。就我们现阶段的学习而言,没有良好的数学基础想在理工科领域内混的风生水起几乎是不可能的。

作为一个过来人,今天我就说说关于高数的点滴看法。毕竟在上大学时,笔者几乎看完学校图书室数学类比较知名图书100多本,记了笔记16大本(冲着考研),至今还保留有,每每看到这些笔记很是感慨啊。为了使大家了解“高等数学”在数学中的地位,我们简要地介绍一点数学的历史。

如上图,了解数学的发展阶段,就知道了高等数学在数学发展过程中的地位,微积分(Calculus),即高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分是以变量与变量之间的关系(即函数)为研究对象,所用的主要工具是极限。微积分最重要的思想就是“微元”和“无限逼近”。

高数为什么叫高数?

有人作了一个粗浅的比喻:如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干就是“高等分析、高等代数、高等几何”(——它们被统称为高等数学)。这个粗浅的比喻,形象地说明这“三高”在数学中的地位和作用,而微积分学在“三高”中又有更特殊的地位。学习微积分学当然应该有初等数学的基础,而学习任何一门近代数学或者工程技术都必须先学微积分。

英国科学家牛顿和德国科学家莱布尼茨在总结前人工作的基础上各自独立地创立了微积分,与其说是数学史上,不如说是科学史上的一件大事。

恩格斯指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分学的发明那样被看作人类精神的最高胜利了。”他还说;“只有微积分学才能使自然科学有可能用数学来不仅仅表明状态,并且也表明过程、运动。”

美国著名数学家柯朗指出:“微积分,或曰数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具…这门学科乃是一种憾人心灵的智力奋斗的结晶。”

数百年来,在大学的所有理工类、经济类专业中,微积分总是被列为一门重要的基础理论课。

时至今日,在大学的所有经济类、理工类专业中,微积分总是被列为一门重要的基础理论课。

高等数学有哪些特点?

高等数学有三个显著的特点:高度的抽象性;严谨的逻辑性;广泛的应用性。

(1)高度的抽象性

数学的抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却不是每次都把它们同具体的对象联系起来。在数学的抽象中只留下量的关系和空间形式,而舍弃了其他一切。它的抽象程度大大超过了自然科学中一般的抽象。

(2)严谨的逻辑性

数学中的每一个定理,不论验证了多少实例,只有当它从逻辑上被严格地证明了的时候,才能在数学中成立。在数学中要证明一个定理,必须是从条件和已有的数学公式出发,用严谨的逻辑推理方法导出结论。

(3)广泛的应用性

高等数学具有广泛的应用性。例如,掌握了导数概念及其运算法则,就可以用它来刻画和计算曲线的切线斜率、曲线的曲率等等几何量;就可以用它来刻画和计算速度、加速度、密度等等物理量;就可以用它来刻画和计算产品产量的增长率、成本的下降率等等经济量;……。掌握了定积分概念及其运算法则,就可以用它来刻画和计算曲线的弧长、不规则图形的面积、不规则立体的体积等等几何量;就可以用它来刻画和计算变速运动的物体的行程、变力所做的功、物体的重心等等物理量;就可以用它来刻画和计算总产量、总成本等等经济量。

感慨与反思

善于发现数学的美,或许我们就会兴趣盎然探寻它,一首小诗送给大家

拉格朗日,

罗尔街旁,

守望柯西的忧伤;

若思想有界,

爱已被迫收敛,

感情的定义域内连续。

洛必达的终结,

解不开泰勒的心结,

是否还在麦克劳林的彷徨中独自徘徊。

我们拿生命的定积分,

丈量感情的微分,

换来青春的不定积分,

前方是否可导,

等待一生的莱布尼茨。

法国数学家笛卡尔指出:“没有正确的方法,即使有眼睛的博学者也会像瞎子一样盲目摸索”。学习必须讲究方法,但任何学习方法都不是惟一的。希望同学们能够尽快适应大学的学习生活掌握正确的学习方法,培养能力,提高综合素质。

非数学专业考研想考数学专业,建议吗

是可以的,兴趣是成功的第一步,如果对数学专业有兴趣的话从头开始学也无妨

但是数学专业的学习还是很有难度的,一看思维逻辑能力,二看本身基础的积累程度,如果本身也是理工科专业的话,跨考难度还是不大的,如果本科专业是没有接触过数学学科的话,建议不要将目标院校定太高,否则失败几率很大

如果真的对数学专业有兴趣的话还是建议你大胆尝试,考研是充满挑战的,读研过程也是枯燥漫长的,但如果有兴趣作为支撑的话困难也能被克服,况且,数学发展前景还是不错的。

另外,在数学备考过程中如果遇到难题的话,可以使用上学吧找答案APP进行搜题,速度快,效率高,很适合备考时期使用

END,本文到此结束,如果可以帮助到大家,还望关注本站哦!

2018考研数学二高等数学考点分析 难度适中

声明:本文内容来自互联网不代表本站观点,转载请注明出处:https://bk.oku6.com/12/92153.html

相关推荐