很多朋友对于大数据是什么和为什么叫做大数据不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
本文目录
大数据的含义和作用是什么
大数据简单说就是现实世界数据化!
而大数据对于个人的意义就是:个人与信息的强结合,个人自带可信的信息。
就拿健康码来说,为什么绿码就能放行?为什么各个检查口看到绿码就放行?因为绿码是携带了个人安全的健康信息,表示这个人是低风险的。
换句话说,健康码是个人信息的一部分,而且是可信的。
健康码的存在,是基于大数据的。我们人会休息,但是手机不会休息,于是我们的位置信息随时随地被记录下来,形成一个个人的行动路径。我们有没有经过高风险地区,甚至可以划分到社区和小区。通过收集类似的个人大量数据,最终形成了一个绿色的健康码。以证明我们是安全的,我们没有携带病毒。
早期互联网,人和信息是分开的。电脑是固定在一个个地方,我们只能收集到ip,个人账户信息。地理位置只能通过ip来推测,那个时代,广告的精准推送是非常难的。只能根据地区来推送。
而现在,智能手机的大量普及,不可避免的,我们通过各种“用户协议”开始暴露我们的个人数据,去了哪里,买了什么东西,和谁是朋友和一些基本信息,性别,年龄等等。
于是,大数据算法可以推算出,我们的行动路径,我们的爱好,活跃时间,喜欢什么app,喜欢什么文章。最终逐渐的,我们数据个人形象越来越逼近真实的我们。
而健康码的出现,几乎就是一个正面的证明,说明我们的个人数据形象和真实的我们已经几乎等同了。
这就是大数据时代,我们逐渐在变得越来越透明,越来越数据化。
数据就是我们,我们就是数据!
大数据是什么
采集记录足够多的数据,使工作更加针对化和精准化,这是大数据吗?这不是大数据而只是数据化。
什么是大数据呢?例如洛杉矶警方曾对以往的刑事案件做了统计,通过算法得出了第二天的高概率犯罪地点,然后有针对性的派警察去该处巡逻,从而使得当地的犯罪现象下降20%。这是大数据。
再比如,经济学家都认为股票无法预测,而一位剑桥大学毕业的博士搞了个公司,对有史以来几乎所有的证券交易的数据进行记录,然后通过算法进行分析。
他对什么国家政策、公司业绩、行业走向等等一眼都不看,100%地排除主观意志的,只根据计算结果来进行投资,最后赚了大钱。这是大数据。
大数据的精髓并不在于数据的精准和数量,而在于对内在规律的挖掘和对未来趋势的预测。其思路是:一个结果是有很多原因的,原因作用的强度可能是随机的,我们对其中作用的机理并不清楚。
我们难以找出规律性,但知道规律性就蕴含在结果数据之中,如果我们能建设合适的模型,写出好的算法,就有可能把这个规律性提炼出来,从而能科学地发现真相和预测未来。
今天上午在贵州省大数据中心看到了大数据应用的事例。
金润建设和鹏润达这两家企业分别投标200多次,一次也没中过,依然积极地投。投标是要成本的,这两家公司那里来的动力?
通过大数据的知识挖掘技术,发现了它们总是陪着固定的一家公司一同招标,最后总是那家公司中标。围标、串标、陪标的秘密被大数据挖掘出来了??
数据蕴含着无穷的价值,大数据就是“钻石矿”,但必须善于挖掘。
数据科学与大数据技术,简称“大数据”,这个专业好不好
回答:热门而火爆的新兴专业。
1.数据科学与大数据技术,简称“大数据”,是计算机、人工智能等多学科相互交叉的专业。
2.大数据专业,主要培养通过大数据思维,对大数据进行开发运用的高层次人才。毕业后,主要去向为政府、企业、公司,具体行业为保险、电子商务、银行、金融、医药、互联网等。
3.自中科院首开“大数据技术与应用”专业以来,截止目前,全国有近300所大学开设了大数据专业,可见该专业的热门程度。
4.据《大数据人才报告》显示,目前全国仅有大数据人才46万,预计未来几年,光是基础性数据分析人才一项,其缺口竟达14000000万,简直不亚于令人吃惊的“天文数字”。
5.大数据人才的严重缺乏,造成了有些行业招不到大数据人才,特别是中小型,花高薪也很难招到。据调查,现工作一年的大数据人才月薪是12000元,工龄3年的hadoop人才,年薪居然高达40万左右。
综上可见,热门、火爆、缺乏、高薪就成了大数据专业的代名词。大数据的定义是什么
“大数据”(Bigdata)是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。分析师团队认为,大数据(Bigdata)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
好了,文章到这里就结束啦,如果本次分享的大数据是什么和为什么叫做大数据问题对您有所帮助,还望关注下本站哦!
声明:本文内容来自互联网不代表本站观点,转载请注明出处:https://bk.oku6.com/14/138509.html